Gamma-Spektroskopie – Halbleiterdetektor

Institut für Physik – Humboldt-Universität zu Berlin

Hannes Vogel¹ (573003), Max Dreyer² (573838)

¹vogelhaq@physik.hu-berlin.de, ²dreyermq@physik.hu-berlin.de 11. November 2018

Abstract Im Versuch wurden die Gamma-Spektren von Am-241, Ba-133, Co-60 und Cs-137 mit einem Germanium-Halbleiterdetektor untersucht. Zunächst wurden charakteristische Detektorparameter wie Peak-to-Compton-Verhältnis, Energieauflösung und relative Detektoreffizienz ermittelt. Damit konnte die Compton-Kante für Cs-137

$$E_{\gamma c}^{mess} = (480 \pm 4) \text{ keV}$$

und die Aktivität der Cs-137-Quelle bestimmt werden. Außerdem wurde die Energieabhängigkeit des Absorptionskoeffizienten für Al, Cu, Mo und Pb untersucht. Dabei zeigt Pb die stärkste Absorption und Al die schwächste.

1 Grundlagen

Um γ -Strahlung im Bereich von keV bis ~10 MeV zu messen, bieten Ge-Halbleiterdetektoren hohe Energieauflösung. Die vorherrschenden Wechselwirkungen zwischen Detektormaterial und γ -Strahlung sind Paarerzeugung, Compton-Streuung und der Photoeffekt. Deren Stärke ist abhängig von der Photonenenergie E_{γ} . So dominiert der Photoeffekt bei Energien bis 100 keV, die Compton-Streuung bei etwa 1 MeV und Paarbildung ab 10 MeV [2]. Aus den Spektren verschiedener Quellen lassen sich die Lage der entsprechenden Peaks sowie der Compton-Kante ermitteln (Siehe Tab. 1).

Bei der Wechselwirkung zwischen γ -Strahlung und einem Absorbermaterial ist der Wirkungsquerschnitt σ_i abhängig von der Energie der Photonen E_{γ} und der Kernladungszahl Z des Absorbers. Für kleine E_{γ} gilt:

$$\sigma = const \cdot \frac{Z^n}{E_{\gamma}^m} \text{ mit } n = 4 \dots 5 \text{ und } m = \frac{7}{2}$$
 (1)

Für den Massenarbsorptionskoeffizienten μ in Abhängigkeit von der Dichte ρ , Avogadrokonstante N_A , Molmasse A und dem Wirkungsquerschnitt σ gilt:

$$\mu = N_A \cdot \frac{\rho}{A} \cdot \sigma \tag{2}$$

Weitere physikalische Grundlagen und Informationen zum Versuchsaufbau sind unter [1], [2] zu finden.

Prozess	Energiebereich
Photoeffekt	
Full Energy Photo Peak	E_{γ}
Paarerzeugung	
Single Escape Peak	$E_{\gamma} - 511 \text{ keV}$
Double Escape Peak	$E_{\gamma} - 1022 \text{ keV}$
Compton-Streuung	
Comptonkante	$E_{\gamma c}$
Comptonuntergrund	0 bis $E_{\gamma c}$
mehrfach: Full Energy Peak	E_{γ}
Rückstreuung	
Rückstreupeak	E_{γ} - $E_{\gamma c}$

Tabelle 1 Verschiedene Prozesse im γ -Spektrum (Siehe [2])

2 Aufbau

Der Versuchsaufbau wurde gegenüber [1] nicht geändert. Die Entfernung zwischen den verwendeten Quellen (Tab.2) und dem Detektor wurde konstant auf $d = (25,0 \pm 0,2)$ cm gehalten und nach jeder Messung nochmals überprüft, um Fehlern durch Verwacklung vorzubeugen. Die Betriebsspannung des Ge-Detektors belief sich auf 3 kV. Die angezeigte Totzeit von 3% wurde im Allgemeinen nicht überschritten. Zur Auswertung wurde MATLAB verwendet.

Um die Aktivität A(t) der Quellen zu berechnen, wurde das Zerfallsgesetz

$$A(t) = A_0 \cdot \exp\left(-\frac{\ln(2) \cdot t}{T_{1/2}}\right) \tag{3}$$

genutzt. Dabei entspricht A_0 der Anfangsaktivität (gemessen am 1.11.1996 laut Probenhalter) und t der verstrichenen Zeit bis zur Messung am Versuchstag (25.10.2018, 8028 d). Die Halbwertszeiten $T_{1/2}$ wurden [1] entnommen.

Isotop	Gamma	linien [k	eV] [2, 3]	S. 34]	$A_{2018} \; [\mathrm{kBq}]$
Cs-137	$661,\! 6$	32,0			224
Ba-133	355,9	81,0	31,0	$_{30,6}$	94
Co-60	1332,5	1173,2			26
Am-241	$59,\!5$	$13,\!9$	$17,\!8$		362

Tabelle 2 Verwendete Gammastrahler mit Aktivitä
tA, berechnet nach dem Zerfallsgesetz (3)

3 Durchführung

3.1 Kalibrierung und Untergrund

Zunächst muss der Vielkanalanalysator kalibriert werden. Mithilfe der Energie bekannter Emissionslinien (Tab. 2) kann die entsprechende Kanalzahl x mit einer linearen Funktion $f(x) = a \cdot x$ in Energiewerte übersetzt werden (Abb. 1).

Zusätzlich müssen die Messwerte um den Untergrund korrigiert werden. Dazu wurde das Untergrundspektrum ohne Quelle über eine Messzeit von 5229,30 s aufgenommen (Abb. 2). Im Untergrundspektrum sind unter anderem die Zerfallsprodukte der Ra-226-Reihe (Pb-214 bei 295,213 keV und Bi-214 bei 609,312 keV [3, S. 428]) sichtbar. Dies ist nicht erstaunlich, da Ra-226 einen großen Beitrag zur Strahlenbelastung des Menschen liefert. Der erwartete Peak für K-40 bei 1460,822 keV [6] lag knapp außerhalb des Messbereichs. Zur Korrektur der verschiedenen Messwerte muss das Untergrundsignal noch auf die entsprechenden Messzeiten skaliert werden.

Alle dargestellten Ergebnisse sind kalibriert und um den Untergund korrigiert.

Abbildung 1 Nach Kalibration zeigt sich ein linearer Verlauf der Energie in Abhängigkeit von der Kanalzahl

Abbildung 2 Untergrundspektrum über Messzeit von 5229,30 s

3.2 Cs-137 Spektrum und Compton-Kante

Im Spektrum von Cs-137 lassen sich der Full Energy Peak E_{γ} und die Compton-Kante $E_{\gamma c}$ sehr gut erkennen (Abb. 3).

$$E_{\gamma}^{mess} = (660 \pm 4) \text{ keV}$$
$$E_{\gamma c}^{mess} = (480 \pm 4) \text{ keV}$$

Diese Werte überlappen die theoretischen Vorhersagen im Rahmen ihrer einfachen Unsicherheiten.

$$E_{\gamma}^{th} = 661,6 \text{ keV} \quad \text{(Tab. 2)}$$
$$E_{\gamma c}^{th} = \frac{E_{\gamma}}{1 + \frac{511 \text{ keV}}{2 \cdot E_{\gamma}}} = 477,3 \text{ keV} \quad [2, \text{ S. 8}]$$

Für den Rückstreupeak E_{bc} , der deutlich stärker verrauscht ist, gilt dies erst im doppelten Fehlerintervall.

$$E_{bc}^{mess} = (190 \pm 4) \text{ keV}$$
$$E_{bc}^{th} = E_{\gamma} - E_{\gamma c} = 184.3 \text{ keV}$$

Für die Peak-Bestimmung wurde eine Unsicherheit von 5 Kanälen angenommen, woraus sich über die Kalibrierung (Abb. 1) der Fehler ergibt.

Abbildung 3 Spektrum von Cs-137: (b) Rückstreupeak bei 190 keV (c) Compton-Kante bei 480 keV, (d) Full Energy Peak bei 660 keV

3.3 Detektorparameter

3.3.1 relative Detektoreffizienz

Die relative Detektoreffizienz wird nach IEEE-Standard mithilfe der 1,33 MeV-Linie von Co^{60} gemessen. Dabei wird die Zählrate R der Quelle ca. 10 Minuten in einem Abstand von 25 cm aufgenommen. Die Rate R wird dann im Verhältnis zu der Zählrate eines 3x3 Zoll NaJ(Ti)-Szintillationsdetektor unter gleichen Bedingungen angegeben:

$$\epsilon_{rel} = 8,33 \cdot 10^4 \frac{R}{A}\%$$

Messung Die Zählrate R wurde aus der Summe aller Counts des 1,33 MeV-Peaks gewonnen, wobei der Fehler jedes Kanals \sqrt{n} (n: Counts eines Kanals) beträgt, wenn eine Poissonverteilung angenommen wird. Mit $\sum n = (3,77 \pm 0,21)$ kcts (siehe Abb. 6) und t = 614 s sowie $A = (26,1 \pm 0,3)$ Bq ergibt sich:

$$\epsilon_{rel} = (23, 5 \pm 1, 3) \%$$

Datenblatt Nach Herstellerangaben beträgt $\epsilon_{ref} \approx 20\%$, wobei im März 2017 eine Testmessung durchgeführt wurde, die $\epsilon_{rel} \approx 22,3\%$ ergab.

Daumenregel Aus [1, S. 3] konnte für die relative Detektoreffizienz ε_{rel} folgende Daumenregel entnommen werden, wobei der Detektordurchmesser d = 5,74 cm beträgt:

$$\varepsilon_{rel} = 0.17 \text{ cm}^{-3} \cdot (5.74 \text{ cm})^3 \%$$

 $\approx 32.15 \%.$

Hierbei wurde angenommen, dass der Detektor in Höhe und Durchmesser identisch ist. Die Höhe beträgt jedoch h = 3,51 cm und somit wird ϵ_{rel} in Wirklichkeit kleiner sein, was auch die anderen Werte (aus Messung/Datenblatt) bestätigen.

3.3.2 Energieauflösung

Die Energieauflösung wird im Folgenden durch den FWHM-Wert für verschiedene Energie-Peaks der Quellen ermittelt. Abbildung 4 zeigt ein Beispiel für einen Gaußfit.

Abbildung 4 Beispiel für das Fitten eines Peaks im Spektrum mithilfe einer Gaußfunktion. $(R^2 = 0.997)$

In der Testmessung im März 2017 wurde für den 1,33 MeV Peak von Co⁶⁰ ein FWHM von 1,72 keV ermittelt. In dem Versuch ergab sich FWHM= $(1,758 \pm 0,022)$ keV. Auch die Herstellerangabe von 1,8 keV passt zu der Messung. In Abbildung 5 sind die Werte der FWHM für verschiedene Energien dargestellt. Man erkennt, dass für höhere Energien die Breite der Peaks zunimmt.

Abbildung 5 FWHM in Ahängigkeit von der Energie des Peaks.

3.3.3 Peak-to-Compton-Verhältnis

Zur Ermittlung des Peak-to-Compton-Verhältnisses PtC_{IEEE} wurde nach IEEE-Standard verfahren (t=10 min, d=25 cm, Co-60). Sein Wert bestimmt sich aus dem Verhältnis der maximalen Höhe $N_{peak,max}$ des 1,33 MeV-Peaks (Abb. 6) und der durchschnittlichen Zählrate N_{compt} für den Compton-Untergrund im Bereich von 1,040 MeV bis 1,096 MeV. Für die Zählrate ergibt sich der Fehler aus der Standardabweichung der Werte im Energiebereich.

$$N_{compt} = (13 \pm 4) \text{ cts}$$
$$N_{peak,max} = (663 \pm 26) \text{ cts}$$
$$PtC_{IEEE} = \frac{N_{peak,max}}{N_{compt}} = 51 \pm 3$$

Nach [3, S. 414] liegt PtC_{IEEE} für Ge-Detektoren üblicherweise im Bereich von 30 bis 60. Diese Angabe deckt sich gut mit dem ermittelten Wert.

Um die Energieabhängigkeit des Peak-to-Compton-Verhältnis zu überprüfen, wurden alle Linien der Isotope aus Tab. 2 untersucht. Statt des Peakmaximums wurde hierbei das Integral I_{peak} über den Peak betrachtet. Die durchschnittliche Zählrate des Comptonuntergrunds I_{compt} wurde mit einer Box-Funktion ermittelt. So ergibt sich beispielsweise für den 1,33 MeV-Peak von C-60:

$$I_{peak} = (3,77 \pm 0,21) \, 10^3 \text{cts},$$

$$I_{compt} = (5,5 \pm 1,3) \, 10^4 \text{cts},$$

$$PtC = 0.070 \pm 0.004.$$

Wenn mehrere Linien desselben Isotops innerhalb eines Bereichs von 100 keV lagen, wurden die Signale (und der Comptonuntergrund) aufaddiert und ein gemeinsames Peak-to-Compton-Verhältnis ermittelt (Siehe Abb. 7). Es zeigt sich ein Zusammenhang zwischen abnehmendem Peak-to-Compton-Verhältnis und steigender Energie. Die Compton-Streuung wird ab 0,2 MeV zum dominierenden Prozess [2, S. 9].

Abbildung 6 1330 keV Peak von C-60, Höhe $N = (663 \pm 26)$ cts

Abbildung 7 Peak-to-Compton-Verhältnis als Verhältnis der Wirkungsquerschnitte von vollständiger Absorption und Comptoneffekt

3.4 Massenabsorptionskoeffizient

3.4.1 Materialabhängigkeit

Zur Ermittlung der Materialabhängigkeit des Massenabsorptionskoeffizienten μ wurde die Ba-133-Quelle mit Absorberplatten aus verschiedenen Materialien (Al, Cu, Mo, Pb) abgeschirmt. Gleichzeitig wurde die Zahl/Dicke der Platten variiert, um den exponentiellen Verlauf der Abschirmung zu untersuchen

(Siehe 8 für Aluminium). Gemessen wurden die Intensitäten für die 355,9-keV- und 81,0-keV-Peaks anhand der Integrale der Peaks. Blei (Z=82) zeigt das stärkste und Aluminium (Z=13) das schwächste Absorptionsverhalten (Tab. 3.4.1).

Material	$\mu_{335,9 \text{ keV}} \text{ [mm}^{-1} \text{]}$	$\mu_{81,0 \text{ keV}} \text{ [mm}^{-1} \text{]}$
$_{13}\mathrm{Al}$	$0,0242{\pm}0,0009$	$0,0360{\pm}0,0010$
$_{29}\mathrm{Cu}$	$0,078{\pm}0,013$	$0,532{\pm}0,020$
$_{42}Mo$	$0{,}10\pm0{,}01$	$1{,}63{\pm}0{,}05$
$_{82}\mathrm{Pb}$	$0,269{\pm}0,007$	$1,71{\pm}0,12$

Tabelle 3 Materialabhängigkeit der Absorptionskoeffizienten μ , Fit für Barium-133 bei 335,9 keV und 81,0 keV

Die Abhängigkeit von der Ordnungszahl Z kann für beide Peaks untersucht werden und fällt deutlich geringer aus als nach Vorhersage $n = 4 \dots 5$ (Form. 1).

$$n_{356 \text{ keV}} = 1,62 \pm 0,26;$$
 $R^2(\text{Fit}) = 0,952$
 $n_{81 \text{ keV}} = 2,5 \pm 0,4;$ $R^2(\text{Fit}) = 0,953$

Abbildung 8 Bestimmung Absorptionskoeffizient μ für Al

Abbildung 9 Bestimmung Materialabhängigkeit Z^n für Ba-133 mit verschiedenen Absorptionsmaterialien

3.4.2 Energieabhängigkeit

Um den Einfluss der Photonenenergie E_{γ} auf μ zu ermitteln, wurden verschiedene Quellen (Tab. 2) mit einer variablen Anzahl/ Dicke an Kupferplatten abgeschirmt. Daraus lässt sich die Energieabhängigkeit bestimmten (Abb. 10). Auch hier ist der Wert geringer als nach Vorhersage m = 3,5 (Form. 1).

$$m = 1,49 \pm 0,13; R^2(Fit) = 0,999$$

Abbildung 10 Bestimmung Energieabhängigkeit E^m für Cu mit verschiedenen Strahlungsquellen

3.5 Aktivität und Dosis Cs-137

Die Aktivität der Cs-137-Quelle kann mit der integralen Zählrate R_{int} abgeschätzt werden. Dazu wird aus der realen Zählrate mithilfe der Detektoreffizienz die ideale Zählrate R_{ideal} bestimmt. Aus dieser lässt sich aus dem Abstand zwischen Detektor und Quelle $d = (25, 0 \pm 0, 2)$ cm sowie der Oberfläche *S* des Detektors (Durchmesser: 57,4 mm [1]) die Aktivität *A* berechnen.

$$R_{ideal} = \frac{R_{int}}{\epsilon_{rel}}$$

$$S = \frac{\pi}{4} (57,4 \text{ mm})^2$$

$$A = R_{ideal} \cdot \frac{4\pi d^2}{S} = (230 \pm 9) \text{ kBq}$$

Dieser Wert überlappt den theoretischen Wert A_{th} aus Tab. 2 im einfachen Fehlerintervall.

$$A_{th} = 224 \text{ kBq}$$

Die akkumulierte Dosis D ergibt sich aus dem Verhältnis der absorbierten Energie E_{abs} und der Körpermasse (≈ 80 kg).

$$E_{abs} = A \cdot E_{\gamma} \cdot t \cdot \frac{S_k}{4\pi d} \cdot (1 - \exp(-\rho \cdot \mu_a \cdot d_k))$$
$$D = \frac{E_{abs}}{m_k} = (4.2 \pm 0.5) \cdot 10^{-8} \text{Gy}$$

Daraus ergibt sich eine Äquvalenzdosis H von

$$H = (0.042 \pm 0.005) \ \mu \text{Sv}.$$

Verglichen mit dem Grenzwert von 1 mSv pro Kalenderjahr [5, S. 93] ist die zusätzliche Strahlenbelastung durch den Versuch sehr gering.

4 Zusammenfassung

Im Versuch konnten grundlegende Detektorparameter (relative Detektoreffizienz ϵ_{rel} , Peak-to-Compton-Verhältnis nach IEEE-Standard PtC_{IEEE} und nach physikalischer Definition PtC, Energieauflösung) des Ge-Halbleiterdetektors bestimmt werden. Außerdem wurde die Aktivität A der Cs-137-Quelle sowie die Compton-Kante $E_{\gamma c}$ und die akkumulierte Dosis H

ermittelt. Bei der Messung des Massenabsorptionskoeffizienten zeigen sich die Material- und Energieabhängigkeit Z^n , E^m . Alle ermittelten Größen können in Tab. 4 gefunden werden.

Tabelle 4 Zusammenfassung aller ermittelten Größen. (¹ FWHM bezüglich des 1,33 MeV Peaks von Co^{60})

4.1 Fehlerquellen

Größe	Messwert	Vorhersage
$E_{\gamma c}$	$(480 \pm 4) \text{ keV}$	477,3 keV [2, S. 8]
ϵ_{rel}	$(23,5\pm1,3)\%$	20%. [1, S. 3]
$FWHM^1$	$(1,758 \pm 0,022) \mathrm{keV}$	$1,72\mathrm{keV}$
PtC_{IEEE}	51 ± 3	3060 [3, S. 414]
PtC	$0,070{\pm}0,004$	
A	$(230 \pm 9) \text{ kBq}$	(224 ± 3) kBq
H	$(0,042 \pm 0,005) \ \mu Sv$	$\ll 1 \text{ mS}$
$n_{356\rm\ keV}$	$1,\!62{\pm}0,\!26$	$4\dots 5$
$n_{81 \text{ keV}}$	$2,5\pm0,4$	$4\dots 5$
m	$1,\!49{\pm}0,\!13$	$3,\!5$

Alle Messungen können durch längere Messzeiten und stärkere Unterdrückung des Untergrunds noch weiter verbessert werden. Gegebenenfalls treten Mikrophonieeffekte auf [2, S. 20]. Für die Messung bei der C60-Quelle ist der Einfluss der beiden Experimentatoren, die im Abstand von 1 Meter neben dem Versuchsaufbau saßen und jeweils etwa 9 kBq an Strahlungsleistung [5] beigetragen haben, nicht mehr zu vernachlässigen.

Literatur

- [1] T. Hengstebeck u.a.: HLD: Gamma-Spektroskopie II Halbleiterdetektor, Vers. 1.4, 10. April 2018
- [2] O. Boslau: Halbleiterdetektoren für die Röntgen- und Gammaspektroskopie, 1997
- [3] G. F. Knoll: Radiation Detection and Measurement, 3. Edition, John Wiley & Sons [URL: http://users.lngs.infn.it/ dimarco/Radiation%20Detection%20and%20Measurement,%203rd%20ed%20-%20Glenn%20F.pdf], überprüft am 07.11.2018, 10:00 Uhr GST
- [4] P. J. Mohr, B. N. Taylor: CODATA recommended values of the fundamental physical constants, 1998, [URL: http://physics.nist.gov/cuu/Archive/1998RMP.pdf], überprüft am 09.06.2016, 18:00 Uhr GST
- M. Volkmer: Radioaktivität und Strahlenschutz, Köln 2012, ISBN 978-3-926956-45-3, S.
 56 [URL: https://www.kernenergie.de/kernenergie-wAssets/docs/service/013radioaktivitaet-u-strahlenschutz2012.pdf], überprüft am 1.11.2019, 18:00 Uhr GST
- [6] Laboratoire National Henri Becquerel, *DDEP recommended data*, Decay Data Evaluation Project, [URL: www.nucleide.org/DDEP_WG/DDEPdata.htm], überprüft am 1.11.2019, 18:00 Uhr GST